Load modules In order to use Jupyter notebook and python3.7, I need to load module python/conda/3.7 first. To automatically load specific software module or modules every time you log into the ser...
Software Configurations
TexStudio Set dark theme for TexStudio Search for .txsprofile files to find the settings that you like. I personally like zenburn very much and I found a very helpful link. Find out the where...
Terminal Configurations
iTerm2 zsh After seeing several posts talking about the benefits of zsh over bash, I finally decided to switch from bash to zsh. In order to not lose key feature before, I did the following config...
Emacs Configuration
References: Markdown Mode for Emacs Emacs: The Best Python Editor? Zenburn for Emacs Key settings Set Command as the meta key. 1 2 3 4 ;; key bindings (when (eq system-type 'darwin)...
公司的力量
Reference: 公司的力量解说词 第一集 公司!公司! 第二集 市场无限 第三集 猎富时代 第四集 进步之痛 进步之殇 1886年是公司史上重要的一年。在这一年,美国最高法院宣布公司被视为宪法保护下的自然人,受到《权利法案》的保障。也是在这一年,美国的罢工多达1500多次。 工业化的快速进程,使得世界在19世纪100年中所发生的改变,远远超过此前的3000年。然而正因为如此...
鼠疫
更新于2020年3月12日 最近疫情越来越严重,我总是在切身关于自己的事情上才开始分外关注和重视,现在想来甚是愚蠢。所有人在病毒和战争面前都是一体的,没有人能够独善其身。我想着趁这个机会好好看一下加缪的《鼠疫》,希望能获得一些启发。身处这个当口,感受愈发强烈。 第一部 天灾人祸本是常见知识,然而当灾祸落在大家头上时,谁都难以相信那会是灾祸。人世间经历过多少鼠疫和战争,两者的次...
SHAP
I found SHAP to be a very helpful and interesting tool, and this post is mainly my understanding of the two papers about SHAP by Scott M. Lundberg. The first paper is about general use of SHAP A Un...
穷爸爸富爸爸
从这一期开始,我开始用中文写下我的阅读笔记,一则是阅读的书大都是中文的,更方便摘录,二则是自己的英文水平尚浅,还没办法用英文表述一些自己的思考。希望通过记笔记和思考能让我的阅读更落到实处,也希望它们帮助我一样,能给你们一些小启发。话不多说,今天主要谈一谈《穷爸爸富爸爸》的阅读笔记和思考。 序言部分 富人之所以越来越富,穷人之所以越来越穷,中产阶级之所以总是在债务泥潭中挣扎,其主要原因...
Scrape using PHP
I wrote some articles in my Wechat official account before. I worried that some day the links might not work anymore, so I decided to get the local html files of those articles. And the following i...
Logistic Regression
Parameter Estimate The parameters are estimated by maximum likelihood estimate. When we assume $p$ is a constant, $L = \prod_{i=1}^{n} p^{y_{i}}(1-p)^{1-y_{i}}$, then $\hat{p}=n^{-1} \sum_{i=1}^...